IoT Security Risks | Network Security Solutions from Avaya

The IoT Chronicles Part 2: Three Big Security Threats—and How to Solve Them

With projected market revenue of $1.7 trillion by 2020, the Internet of Things (IoT) stands to forever change the world as we know it. In part 1 of this series, I demystified the IoT and explored how leaders can create a vertical-driven strategy that produces positive and proactive business outcomes. Your strategy won’t get you far, however, if it doesn’t explicitly address the unique security threats that are inherent to this level of connectivity.

These kinds of threats aren’t easy to identify or mitigate, which is exactly why nearly 60% of companies say they plan to eventually implement the IoT (i.e., once security no longer concerns them) and why nearly 30% have no plans to implement the IoT at all, but this is likely to change quickly.

With the number of connected “things” growing, it’s expected that more hackers will feed off the ever-growing possibilities to attack, threaten and compromise business. Consider the recent IoT-driven DDoS attack on Internet performance company Dyn, which disrupted websites like PayPal, Spotify and Twitter. Dyn’s Chief Strategy Officer admitted last month that some of the traffic that attacked the company came from compromised IoT devices.

As I continue this four-part IoT crash course, I’d be remiss in not discussing security. Having said that, here are three massive IoT security threats we’re seeing today (and how to expertly address them):

  1. Personally-owned devices:

    Research shows that about 40% of U.S. employees at large enterprises bring their own device(s) to work, and 75% of companies currently permit or plan to permit BYOD in the workplace. Today, there’s a clear need among businesses to securely connect these personally owned devices that simultaneously perform multiple functions and connect to public, private and hybrid clouds. It may be easy to secure enterprise IoT, but this gets a lot trickier when you factor in the devices employees are using on your network. Just consider the 10 million Android devices that were infected this summer with Chinese malware.

    My suggestion: implement some sort of malware detection mechanism and deliver some level of automation that can quickly detect abnormalities on employee devices and prevent them from spreading.

  2. Open APIs:

    An open API model is advantageous in that it allows developers outside of companies to easily access and use APIs to create breakthrough innovations. At the same time, however, publicly available APIs are also exposed ones. Promoting openness means anyone can write new APIs (which is a good thing), but that can cause some challenges in the market. If an organization has undocumented features of its API, for instance, or if someone is rolling out an API and doesn’t have it properly documented or controlled, hackers can potentially take advantage. At the end of the day, businesses must be cautious as to what is being exposed and documented when writing APIs.

  3. Influx of data:

    The amount of data being gathered from today’s ever-growing number of connected “things” is simply astounding. In fact, research shows that about 90% of all data in the world today was created in just the past few years (2.5 billion GB of data were being produced every day in 2012 alone!) While big data has the potential to transform internal processes and the customer experience, leaders must ensure they have the right infrastructure in place to securely distribute and store the massive amount of data that flows through their organizations daily.

    My suggestion: have a solid understanding of how much data your network can handle (never overestimate your network capabilities) and plan to scale accordingly. Also, know the origination of your data and what privacy regulations you might need to take depending on the industry in which you operate. Healthcare, for example, must abide by very strict regulations. Be sure to also keep in mind the legality of where you store your data, depending on where that data comes from. Countries like Germany, for instance, have strict privacy laws that others don’t.

The One Thing to Remember

Here’s the thing business leaders must keep top of mind: although the possibilities for data compromise are growing, they’ll never become realities with network security solutions offered from the right provider. This doesn’t mean your security concerns aren’t valid. It simply means that, with the right technology, there’s no longer a reason to let those concerns prevent you from tapping into the immeasurable growth brought about by the IoT.

So, what’s my final suggestion? Organizations should consider a layered approach:

  • Phase I: Analyze, monitor and inspect.
  • Phase II: When classifying a device as suspect, isolate it to a different segment and perform forensic analysis.
  • Phase III:
    • Quarantine the device if known malware is detected and identified.
    • If the cause is unknown/unidentified, maintain isolation in a honeypot—a quarantine zone to understand malware—and deploy counter measures as soon as possible once a fix becomes available.
  • Phase IV: Once malware is clearly identified, quarantine all devices potentially infected while informing the end users and LOBs impacted.

For Phases II and III, invoke an automated sophisticated workflow to notify the right team for just-in-time analysis.

To properly execute on these phases, you need an automated and more secure networking foundation. The legacy client-server is simply not suitable for this new IoT world. Whatever services your connected devices or systems provide, do whatever you can to ensure they are logically segmented on your infrastructure. This is something that can be achieved through end-to-end network segmentation.

An end-to-end network segmentation solution eliminates nodal configuration by leveraging end-to-end Virtual Services Networks (VSNs). This allows businesses to provision their networks only at specific points of service, where those services are being consumed by end users or devices. Ultimately, end-to-end segmentation transforms your network core into an automated and intelligent virtualized transport. Your network segments will be stealth to hackers, flexible for secure and authorized use, and truly isolated from one another. These core capabilities nearly guarantee network security no matter what devices your employees are using, how much data they are generating and sharing, or what APIs are being written.

Your network security strategy will never be effective if your underlying architecture isn’t what it needs to be. In my opinion, end-to-end network segmentation is the most effective way to minimize and control the inherent security risks of the IoT. And the best news is that there are end-to-end segmentation solutions proven to deliver next-generation IoT security—even for companies still leveraging aging infrastructure. The technology is possible, real and waiting to be utilized.

As we move forward with the IoT, we must ensure security is always top of mind. There are a set of best practices that organizations must implement to substantially reduce the risks associated with IoT deployment. Keep in mind, there are no immune systems, but understanding the risks and minimizing the potential business impact is key. In the end, status quo will likely be a disaster for organizations endorsing the IoT at a rapid pace—changes to legacy practices and infrastructure are a must! Thankfully, technology advancements can provide the connectivity, stability and security required to enable companies to take advantage of the opportunities provided by the IoT.

 

Views All Time
Views All Time
5206
Views Today
Views Today
7