How Wi-Fi Location-Based Services Can Step Up Your Public Safety Game

How Wi-Fi Location-Based Services Can Step Up Your Public Safety Game

My first job out of college was working on Sonar Systems for the U.S. Navy. Modern sonar systems passively listen in the ocean to identify targets by the sounds they make. To the Sonar System everything is a target. Targets are classified as unknown, hostile or friendly. Target classification is determined by noise signatures, behavior, heuristics, etc.

Wi-Fi location-based solutions provide similar capabilities as a sonar system. As part of normal operations, a mobile device will probe the network looking for Wireless Access Points (WAPs). Probing helps the device identify and acquire service from the WLAN. When the device is connected to the network, it continues to probe, enabling the device to effectively roam between WAPs. Essentially Wi-Fi enabled devices are projecting energy into the air similar to a ship projecting sound into the ocean.

WAPs listen and respond to the probe messages as part of service delivery. Listening also provides a mechanism to track these devices. A Wi-Fi device probe message includes the Media Access Control (MAC) address of the device, a globally unique identifier. Since most devices probe the network several times a minute, it’s possible to identify the location of a device every few seconds. Therefore, a Wi-Fi location-based solution can identify the location of every wireless device in range of the WLAN.

Wi-Fi location-based services are usually discussed in the realm of suppliers trying to improve customer engagement. However, as Avaya Chief Technologist of SDA Jean Turgeon points out in his recent blog on public safety, there’s an epidemic of man-created tragedies, where people are targeted for harm by other people. Providing safety for the public when a member of the public wants to harm other members of the public is a tough task. Finding a potential antagonist in the crowd is similar to finding the potentially hostile ship in the ocean of ships. Wi-Fi Location-Based Services (WLBS) offer an additional data set that can be used to help identify potential hostiles, and help first responders identify where the friendlies are located.

WLBS uses the signals received by multiple WAPs to triangulate the location of the probing device. In the Avaya solution, performing WLBS is as simple as telling the WAPs to send distance information to an Avaya Breeze™ snap-in that performs the calculation.

Wi-Fi Location-Based Services

The triangulation process provides the ability to identify all of the targets in the WLAN ocean. The next step is to sort the targets. However, rather than classifying as friendly or hostile, the first objective is to sort out known from unknown device owners. Device ownership can be determined in a number of ways, for instance:

  • Connections to the corporate network

    . Employees, contractors, etc. who provide credentials to access the corporate network will have device ownership uniquely identified. Though a single employee may have multiple devices (laptop, phone, tablet) identified to their persona at one time, a device will have a single owner.

  • Device resident apps, such as loyalty apps

    . Apps that provide coupons, track transaction points, etc. can be set up to identify the owner when the app connects to the network.

  • Uniquely identifiable splash page logins

    . Gaining access to a guest network often requires acknowledging appropriate usage parameters on a splash page. The splash page can be set up to require uniquely identifiable information, such as an email address, to gain access.

Therefore, it’s possible to have uniquely identifiable information about the owner of every device that’s connected to your WLAN. Devices that aren’t connected to the network would have unknown owners. However, if the solution maintains an historical database, it may be possible to classify a device if the MAC address has ever been associated to an owner. The current owner may not be the same as the historical, but it’s a starting point.

Now that a mechanism to identify device owners has been established, rules for addressing unknown devices can be generated. The easiest to visualize is the guest-out-of-bounds rule. Most public buildings (civil center, library, court house, school, etc.) consist of areas that are open to the public and areas that are restricted to certain personnel.

When a non-employee’s device is detected in a restricted area, WLBS raises an alert to be processed up-stream. For instance, the feed from the CCTV camera covering the area identified by WLBS could be directed to the security guards computer monitor. The security guard could find the closest member of the security team by looking at a dynamic floor plan display with indicators showing the location of all security personnel (based on their known devices). A message could be sent to closest security person to go to the area and perform a credential check. As the non-employee moves through the area, his position would be updated by the WLBS solution to continue to track the individual. The CCTV and WLBS displays could be routed to the mobile security guard to provide current situational information.

WLBS is dependent on the person of interest having a device with an active Wi-Fi antenna. If the non-employee above is simply lost, they won’t bother to turn off their device. On the other hand, if the person intends harm, they may go to airplane mode. In this case, the security system is relying on more traditional detection methods.

WLBS also has value when looking at people at a macro level. One of the man-created tragedies is the active shooter scenario. In many disaster scenarios, the best course of action is to flee. However, in the active shooter scenario, the best course of action is often to hide. Take a school or shopping mall, people are going to hide all over the place. One of the tasks of first responders is to find where all of the friendlies are hiding without causing the friendlies to expose themselves unnecessarily. WLBS would show where all of the devices are, which provides a good indicator of where people are hiding. So as the first responders are pursuing the hostiles, they would have data to help them understand if the hostiles are heading towards friendlies. Perhaps, the friendlies can be evacuated before a hostile reaches them or the hostiles can be driven to a safer location.

WLBS provides a stealthy way to identify where people are. It isn’t a fool-proof solution. Unlike a ship in the ocean, a person can decide to be silent and thus untraceable. However, in many situations, WLBS will provide valuable information about the location and movement of people. Even if the hostile defeats Wi-Fi tracking, WLBS still provides information about the friendlies. In this case, tracking hostiles may require other technology such as CCTV. (Satellites are used to track ships also.)

The best part of a WLBS solution is that it runs on the WLAN that organizations must deploy to participate in the 21st century. Location data is available on enterprise class WAPs—it’s simply a matter of collecting and acting on the data. With Avaya’s 9100 WLAN, data analysis and workflow development is a Breeze.