911 Answer Delays – Ready, Set, NO!

This Avaya CONNECTED Blog
is also available as an MP3 Audio File


Nobody likes to wait for anything, especially for a 911 call taker during an emergency, and 911 Center Public Safety Answer Points (PSAP) Average Call Answer Times have been under scrutiny lately in several states. But before you throw the baby out with the bath water and criticize 911 Call Taker efficiency, you need to validate the data.

Before you measure something, you need to define where you start measuring. For example, when you run a foot race, whether it’s 50 yards, or 5 km, there is a distinctive starting point and finishing point to the race. The clock starts when you cross the start line, and stops when you cross the finish. This sounds logical right? Looking at statistics for emergency calls, is no different; as long as you understand where the clock started, and why.

While discussing average answer times with a colleague this past week, a point came out in the conversation that created a significant amount of confusion around this very topic. In an emergency seconds matter and as it turns out, some emergency dispatchers were being penalized by not meeting a state-mandated answer time. Other agencies were accused of “fudging the numbers” in an effort to make their statistics fall within acceptable guidelines. While looking at the data, however, it became very apparent that the REAL problem was potentially no one was paying attention to when the clock started, only when it ended.

MSN: A 911 response in Detroit takes how long?
San Diego County’s 9-1-1 Communications Home Page


Cattarin-Gary_LG.jpgSo imagine yourself running a five-minute mile, only to find out later that your time was actually 10 minutes because the clock started while you are tying your shoes. Not really too fair, right? Well, the same goes with 911. For those that have asked for more ‘tech content’, here you go. For the rest of you, you’re welcome to read on, especially if it’s bedtime and your looking for a natural sleeping aid!


The Anatomy Of a 911 Call
Unless you’ve listened to the trunk side of a 911 call, you might be slightly astonished at the archaic analog nature of getting a call from Point A to Point B. About two years ago, I was fortunate enough to receive an audio clip from a 911 call that I quite often use for training purposes; as it highlights several points that otherwise aren’t very obvious.

911 Call Pre-amble: Getting Ready To Get Ready
911 CAMA trunks that connect the PSAP to the 911 Tandem central office, are specialized analog circuits similar to Centrex lines. When a call is presented to them from the 911 network, this signaling mechanism is not ringing voltage, as found on a normal telephone line. The central office will “wink” towards the PSAP by applying reverse battery on the circuit. The PBX will then “wink” back towards the central office confirming its readiness to accept a call. The central office will then “wink” back at the PBX confirming that the response was received, and digits will be coming down the line.

When you look at audio as a sound wave, these “winks” are clearly noticeable as a sharp spike in the audio file and can even be heard as a loud click on the line.

In this example you can clearly see the three winks at the very beginning of the call, and if you are measuring answer time from the central office side, this would be a likely spot to start counting from zero.

160-01.jpg

At this point in time, the audio path is now open between the central office and the 911 PSAP call taking equipment. The central office then signals to the CPE equipment in band information using Multi-Frequency tones for digits and specialize signaling characters to indicate the pANI of the inbound 911 call. Depending on the area, and the carrier, the ANI that is received could be 7 (NNX-XXXX), 8 (I-NNX-XXXX), or 10 digits (NPA-NNX-XXXX)in length. Once again, looking at our example audio, the MF tones are clearly discernible in the audio wave.

160-02.jpg

You will also notice that there is another audio spike, which is the PBX signaling a “wink” back to the central office acknowledging receipt and acceptance of the ANI information. It also serves as a go-ahead signal for the central office to open up the audio channel between the original caller and the PSAP.

At this point, based on the audio in this example, the PBX applies ringing to the line, and you can see the abrupt change in audio as the callers audio is now also patched through.

As an interesting side note, what has happened up until this point is fairly critical in processing and delivering the 911 call to the PSAP. I have seen cases in the past where adjunct equipment has been installed on the CAMA trunks to capture the ANI information and send it over to the CPE 911 equipment for processing. But, because they are signaling back to the central office was not in proper sequence, they returned answer supervision to early to the central office and the callers audio actually corrupted the receipt of the MF tones. In fact, as it turns out a woman screaming can often mimic an MF tone, causing the system to process garbage data and potentially make the call fail.

Another interesting thing happens at this point, and that is the CPE equipment now is aware of the call, and has the information required to process it, and typically generates a Call Detail Reporting (CDR) start record. Once again another potential starting point for the call. The only problem here, is that this starting point is three seconds out of sync with the central office starting point.

The next step in the sequence would be for the CPE or PBX to process the call, and deliver it to a 911 call taker. After analyzing and listing closely to this sample recording, it appears that the 911 call taker answered the line immediately after the first ring (and remember a ring cycle is to second on followed by four seconds of silence). Since we cannot see or hear the second ring, we can assume that the call was picked up almost immediately after the first ring, and in fact you can see a small blip of audio when the line is connected, which is immediately followed by the dispatcher saying “911 what is the location of your emergency?”

160-03.jpg

At this point on the timeline, nine seconds has now passed from when the central office initiated the call, yet depending where the starting point is, can significantly skew the data, and the dispatcher could actually be penalized for a nine second delay
when in fact they answered the call within two seconds of it being presented to them.

Keeping it fair for everyone
let’s face it, we certainly want to make sure that our nation’s public safety operators are doing their job, and are performing within the excepted national specifications. What we have to be careful of though is to make sure that we are not penalizing them by looking at bad data.


Want more Technology, News and Information from Avaya? Be sure to check out the Avaya Podcast Network landing page at http://avaya.com/APN . There you will find additional Podcasts from Industry Events such as Avaya Evolutions and INTEROP, as well as other informative series by the APN Staff.

APN Blog Banner

Thanks for stopping by and reading the Avaya CONNECTED Blog on E9-1-1, I value your opinions, so please feel free to comment below or if you prefer, you can email me privately.

Public comments, suggestions, corrections and loose change is all graciously accepted 😉
Until next week. . . dial carefully.

Be sure to follow me on Twitter @Fletch911

Fletch_Sig.png 


CacheFly LogoAPN is Powered by Cachefly
CacheFly is the world’s fastest CDN, delivering rich-media content up to 10x faster than traditional delivery methods. With a proven track record and over a decade’s worth of CDN experience, companies around the world choose the CacheFly CDN for reliable and unbeatable performance. For more information, visit www.cachefly.com

Views All Time
Views All Time
3073
Views Today
Views Today
4