Don’t Cut That 911 Cord! (Yet)

Before you cut the cord, you better understand what’s attached.

Technologists and legislators in Washington D.C. are currently debating a number of hot-button topics, as they face challenges around upgrading America’s 911 infrastructure. Those topics include the pending sunset of the public switched telephone network (which some industry experts say can happen as early as 2018), the transition to an Internet protocol-based communications backbone, and the entire telecommunications business model being disrupted, as users transition away from traditional legacy services and opt instead for wireless voice and data connectivity.

This past week, the U.S. Senate Subcommittee on Communications Technology and the Internet held a hearing on “Preserving Public Safety and Network Reliability in the IP Transition”. Witnesses appearing at that hearing were:

Ms. Colette D. Honorable – Chairman of the Board and President
National Association of Regulatory Utility Commissioners
Testimony Transcript

Mr. Jonathan Banks -Senior Vice President, Law and Policy
Testimony Transcript

Ms. Jodie Griffin – Senior Staff Attorney
Public Knowledge
Testimony Transcript

Ms. Gigi Smith – President
APCO International
Testimony Transcript

Mr. Henning Schulzrinne – Chief Technology Officer
Federal Communications Commission
Testimony Transcript

Henning Schulzrinne

Schulzrinne summarized the “IP transition” as one of three simultaneous transitions. The application layer, where services are rapidly moving to VoIP from TDM, the network transport layer, where he described TDM circuits as a “content neutral conveyor of information” in the core access network, which was moving from copper telephony to diverse technologies such as coax, wireless, fiber, and satellite.

He spoke about how these diverse technologies will offer new opportunities for advancing consumer welfare and public safety by adding an additional modality and content, yet warned of the potential complexities that these new technologies brought, as well as the lack of some features we have previously relied upon.

Some areas of concern that Schulzrinne noted were combating TDoS attacks and caller ID spoofing that could be detrimental to PSAP operations. Wireless Emergency Alerts (WEA) sent to mobile telephones advising to “seek shelter now,” but unable to deliver detailed information. He noted some recent outages that have affected and exposed frailties in the existing emergency services infrastructure, where a large number of PSAPs were supported by a very small number of servers.

Another area, often forgotten, are citizens with hearing- or speech disabilities that cannot readily use the existing 911 network, due to the fact that is based on voice communications. Although the four major cellular operators have voluntarily agreed to make text-to-911 available, in reality, very few agencies are able to receive text messages.

Avaya has created the following map, based on current data provided by the FCC PSHSB as of May 30th, 2014. Areas in green indicate counties where Text-to-911 from at least a single carrier is available to citizens using some method. Not all carriers currently provide Text-to-911 coverage in all areas, and the policy stands that you should:


Text-to-911 Coverage Map of America

Finally, he noted the alarming trend toward mobile 911 calls and the inability for the PSAP to determine a caller’s location, despite the public’s current perception. He noted that 70 percent of all emergency calls now originate on mobile phones, and 56 percent of those calls are placed from indoors where GPS and wireless triangulation methods are less effective.

This becomes a very troubling fact for enterprise emergency communications. All too often, I hear the response, “I’ll just use my cell phone to call 911 from my office. Why do I need to be able to dial in on the PBX?” While there are technologies that are available that would improve indoor cellular location accuracy, there is much work yet to be done in this area.

Gigi Smith APCO

GiGi Smith, the current president of the Association of Public Safety Communications Officials (APCO) provided additional insight based on her 28 years in public safety, where she started off as a 9-1-1 calltaker and worked her way through the ranks to her current position as the Police Operations Manager for the Salt Lake Valley Emergency Communications Center.

Smith noted that audio quality on emergency calls remains the most important topic to tackle, as critical audio information about a particular incident can be passed along such as “subtle background sounds, like someone racking up a shotgun, [that] can make a significant difference to the first responder.” This is why bridging in other persons to an emergency call are considered NOT to be a good practice, as they can interfere with communications.

The importance of additional data that could be present with IP-related technologies, and the ability for public safety to gather and utilize that data, such as alarms, sensors, video, and social media, was also noted as a potential mechanism to improve on some existing deficiencies that existed in the current architecture.

Taking this information into the Public Safety ESInet is only part of the solution. Support for FirstNet and its ability to deliver broadband to the public safety first responder, as well as all of the “big data” that is collected, is critical to completing the picture.

Smith commended the Senate committee for including the word “reliability” in the title of the hearing, as it has specific importance within the public safety community. Reliable 911 communications are necessary when things are at their worst–such as when wide-scale damage exists–and typically little to no warning prior to the incident is given, not to mention the large surge in traffic on the public safety network that subsequently occurs.

In conclusion, a considerable amount of information was presented at this one-hour-and-46-minute hearing that is well worth the investment of time. You can listen to today’s leaders in the industry discuss the key tenants that are driving next-generation emergency services, the situational awareness that will be available due to the presence of big data, and best practices for connecting and interconnecting citizens who need help with the public safety professionals that can provide that help.

Watch the webcast here.

In order to reach public safety emergency services, you have to be able to dial public safety emergency services. And while we as adults are familiar with dialing ‘9’ for an outside line, the tragic story of Kari Hunt’s murder in December 2013 should remind us all that we teach our children to dial 9-1-1, and in most cases, a child has no idea what an ‘access code’ is or does. You can show your support for that change by going to

Related Articles:

E911’s Fatal Flaw is Lack of Location Data—How Avaya Breeze Can Solve

The night of her husband’s death, Alison Vroome did everything she knew to be right. She grabbed her phone, called 911 and told the operator her address. Then she repeated her address a second, third and fourth time.

The call went to a different North Carolina county; the operator couldn’t understand her address. It was more than 10 minutes into the 911 call before paramedics arrived. Like anyone calling 911 in an emergency, Vroome expected her call to go quickly and smoothly, but it didn’t. Vroome’s call was one of 5.7 million 911 calls that come from wireless phones in NC—about 74% of all 911 calls in the state according to data from 2015. Yet 911 call centers rely on the cellular carrier to provide a cell phone’s location data. The legacy 911 network is voice only and cannot pass any data from the device. Instead, they can only receive the location data from the tower pinged by the call, something not nearly as accurate.

No one can say for certain if Vroome’s husband would be alive today had paramedics arrived sooner, but there isn’t any doubt that the current technology used in E911 emergency situations fails citizens. And this isn’t an issue isolated to the U.S. With the rise of mobile devices, countries and communities around the globe face the same technological flaw—the lack of location information.

As Avaya’s Jean Turgeon addressed in his recent blog on the current state of public safety and E911, accurate location information is one of, if not the most important piece of information that an emergency responder needs; and resolving this fatal flaw requires proactive urgency.

How Today’s #Tech Can Address E911’s Fatal Flaw

My Avaya colleague Mark Fletcher, ENP, recently wrote that when it comes to significantly improving public safety and E911 response times, tech is king. He’s right.

Case in point: In Europe, the introduction of EU eCall to become an integral element of the European emergency number 112 is solving the GPS precision challenge for new passenger vehicles sold in the EU after 2018. In an emergency, an eCall will relay a vehicle’s exact location, time of the incident, and direction of travel to emergency personnel, as sourced from the device, and very accurate. This is done automatically by the vehicle or can be triggered manually by the driver by pushing a button inside the car. That’s technology in action! While we have about two years to go before it becomes available large scale, we’re heading in the right direction.

In addition to eCall, there’s another remarkable solution called Advanced Mobile Location (AML). When a person in distress calls emergency services with a smartphone where AML is enabled, the phone automatically activates its location service to establish its position and then sends this info to emergency services via an SMS. The current downside to this is that AML is only compatible with Android mobile devices (R3.4 or greater). But still … it’s a huge step forward, and sets an excellent example for others.

The concept of AML was developed in the UK by BT’s John Medland in partnership with mobile service provider EE and handset manufacturer HTC initially. First tests were so promising that the European Emergency Number Association (EENA) began to promote AML, which sparked the interest of Google, ultimately getting AML introduced into Android natively. Talk about a ripple effect!

As the world’s leading software and services company, Avaya understands there are better ways to deliver public safety and emergency services, and we’ve been innovating these same capabilities in many commercial arenas for years. Our efforts there have set off their own ripple effect across the public safety industry, urging government agencies around the globe to harness the power of technology to enhance public safety services for citizens. What’s more, our teams are leveraging the Avaya Breeze™ Platform to intelligently link the location data to the incoming eCall or AML call and make it available to the E911 responder. Recently, in partnership with Engelbart Software and Oecon, we’ve developed a flexible and scalable solution for this type of enhanced emergency calling scenario and the results have been positive.

In fact, eCall is looking more and more like a potential game changer, and here’s why.

Let’s look at the technology side of the overall process:

  • A car is involved in an accident.
  • Sensors in the car trigger a sequence of events performed by the In-Vehicle System (IVS).
  • The SIM card registers to the strongest mobile network to raise the emergency call to the EU E112.
  • A modem kicks in, coding the GPS data and other car-related information as audio tones into the voice channel.
  • Immediately following the data transmission, the IVS switches to the hands-free communications system allowing the people in the car to communicate with the E112 responder.

What does this mean for the emergency responder?

  • The E112 responder picks up a call from a mobile device, immediately receiving precise location information. That’s new!
  • The E112 responder can be sure that it’s a serious situation because the airbags have been deployed, which triggers the emergency call sequence to start. So no one is left to wonder the seriousness of the call.
  • Most likely there’s no one for the E112 responder to speak with in the car. Why? Because this is an automatic call, not a call voluntarily initiated by a real person. And while the modem is beeping its data to the Public Safety Answering Point, the passengers might already have stepped out of the car and can’t hear the E112 responder’s “Are you OK?” Or they simply can’t respond because they’re unable due to the severity of the accident.

So are we still talking about a normal emergency call? From my point of view, this is the Internet of Things (IoT) plunging right into public safety and emergency services: sensors, data, processes and integrations. IoT under the disguise of a voice call … this IS a game changer!

At Avaya, we leverage our Breeze workflow engine to tie together voice calls and the IoT. Even though eCall is an initiative in the European Union, we see the concept of telematic calls being discussed around the globe, in public safety as well as in private businesses like the automotive industry. And, yes, we strongly believe that this approach of integration building on Avaya Breeze can also work to help overcome E911’s same fatal flaw, location.

I’ve delivered a series of Avaya Breeze webinars with my colleague, Andrew Maher, featuring Engelbart Software developers. Together, we demonstrate how to deal with eCall and AML. Have a look to learn more about the capabilities of Breeze and its impact on public safety. The demo starts at 00:19:30.


When Is Enough Actually Enough? Exploring the Lagging Face of Public Safety (Part 2)

In Part 1 of this series, Avaya Vice President and Chief Technologist for software-defined architecture Jean Turgeon opened up a much-needed conversation about the current state of public safety and E911 (which, for the record, doesn’t look good). Just consider that a 2014 study of 1,000 public safety answering points (PSAPs) found that only 18.7% are confident in the location data they receive from wireless callers.

It’s no surprise that technology is vital for improving public safety. The way I see it, this is like a three-legged stool. We need:

  1. Originating devices to support location accuracy

  2. 911 call center networks capable of receiving the information

  3. A Public Safety Emergency Services IP Network to connect them

PSAPs must ensure all three legs are sturdy and of equal length, otherwise fundamental capabilities will be severely limited or missing altogether.

Let’s take a look at the networking side of public safety for a moment. Today in the U.S., there are life-threatening complexities associated with dialing 911 for no other reason than the restrictive legacy networks that transport these calls.

That’s a terrifying thought.

Many times the system programming in hotels and office buildings has similar restrictions. This is why I fight tirelessly in support of Kari’s Law, a U.S. Senate bill introduced earlier this year designed to improve 911 services for multiline phone systems. The law is named in honor of Kari Hunt, who was killed by her estranged husband in late 2013 at a motel in Northeast Texas. One of Hunt’s children tried repeatedly to dial 911 from the motel room’s phone, but wasn’t able to get through because the motel required people to dial 9 to get an outside line. This is a fact I continue to repeat, as I still find people who have not heard of this tragedy, or gave it a second thought.

At the same time, the majority of the emergency call centers today have a serious problem with grade of service. It’s something that’s often in the news, constantly talked about, but rarely acted upon. Our public safety networks are something rarely thought about. Consider the fact that there are somewhere close to 6,000 911 call centers across the U.S. today. Given this, what do you think is the average number of positions staffed in those centers? You likely think dozens, and maybe even hundreds. In actuality, that number is a sparse four people.

So, what happens when all four employees at the average 911 center are tied up because 20 people are calling about the same car accident? Those calls will likely overflow to a neighboring town or city, which then also immediately becomes tied up. This cascading effect starts to immediately make sense how quickly several local governments can be taken out of service. This becomes a serious issue when a person is having a heart attack and dials 911 only to get a busy signal or to be put through to a city 10-20 miles away. A more nefarious problem is how easily it would be to disrupt the U.S. 911 network via Telephony Denial of Service (TDoS) attacks, something the FBI and Public Safety worry about daily.

Overcoming Today’s Greatest 911 Challenges

In Part 1 of this series, JT mentioned a few reasons why PSAPs may overlook infrastructure upgrades. In my opinion, there’s only one primary reason: it’s cost-prohibitive. Why? Because at one point, a handful of businesses in the industry decided they wanted to capitalize on the market by creating very specialized and expensive equipment. Because so few people understand 911, these cost-prohibitive solutions (which run on old technology with massive limitations) are widely believed to be the only options available in the market today.

It has never been more evident that almost every 911 center is currently grappling with technological, financial and operational challenges that seem difficult to overcome. As FCC Chairman Tom Wheeler said July 12 in a congressional testimony: “Unless we find a way to help the nation’s [911 centers] overcome the funding, planning and operational challenges they face as commercial communications networks evolve, NG911 will remain beyond reach for much of the nation. Let me be clear on this point: 911 service quality will not stay where it is today, it will degrade if we don’t invest in NG911.”

But remember the three-legged stool, and the originating network, or the enterprise customer. For example, we recently worked with a large customer based in New England that boasted more than 25,000 network endpoints across 700 locations. This included everything from small two-person offices to regional medical centers all the way to large teaching hospitals and universities. The 911 solution this customer was originally going to deploy was estimated at $650,000 in CAPEX, in addition to a monthly recurring operational cost of about $25,000.

Thankfully, this organization came to Avaya before signing the contract and asked if we could assess the situation. After consulting with them, and examining their workflows, we engineered a new operational model that only cost $130,000 in CAPEX, and would be less than $1,500 a month in recurring operational costs. With Avaya functionalities along with technologies delivered by our trusted Select DevConnect Partner Conveyant Systems, Inc., we were able to hand this customer a half a million dollars back in CAPEX, and decreased their OPEX by $282,000 annually. The result of building an efficient 911 solution was the organization now being able to allocate hard-earned dollars towards other top-priority initiatives that had previously gone unfunded. That’s the beauty of it all.

The lesson learned and the key to easily and cost-effectively upgrading your 911 infrastructure is to not accept the status quo, and partner with the right provider for your needs. At Avaya, we know there’s a better way to deliver 911. We take pride in our commitment to driving awareness around this need. It gives us great honor to be advocates for those whose voices must be heard or whose voices have been silenced, like Kari Hunt. We’re dedicated to teaching organizations and our customers that there is in fact a way to seamlessly overcome today’s greatest 911 challenges. We hope that you’ll join us in this very important mission.

When is Enough Actually Enough? A Hard Look at the Lagging Face of Public Safety (Part 1)

When we talk about the state of public safety today, we unfortunately have to recognize the devastating tragedies that have forever affected our communities, schools and businesses worldwide. Research shows that we’re currently experiencing four times as many terrorist attacks globally than in 1990. This month alone, there have been 120 confirmed or suspected attacks—an increase from around 95 in January.

People are being targeted based on their religious beliefs, ideologies and even identities. In France, for instance, we’re seeing new laws that ban certain cultural garbs for fear of terrorist-related threats. Meanwhile, in the U.S., we’re seeing a divide between law enforcement and the very citizens that officers have sworn to serve and protect. In the Middle East, we continue to see unthinkable devastation as violence escalates daily. I understand these aren’t things we want to talk or hear about, but it’s important that we do in order to improve communication infrastructure and transform the global state of public safety and emergency response.

To this end, we’re seeing technology rapidly evolving to a point where there are next-generation solutions available that can help get us to where we need to be. For example, consider the all-new, reopened Sandy Hook Elementary School. On Dec. 14, 2012, the Newtown, CT-based grade school suffered the deadliest mass school shooting in U.S. history. Last month, however, the school reopened its doors equipped with extraordinary technology that ensures next-generation protection for children and staff this school year.

The new design boasts advanced security features that are hidden in plain sight, improving natural surveillance of the grounds. The technology also offers increased situational awareness through a series of impact-resistant windows. Overall, the hope is that the rebuilt school will be the first within the state of Connecticut to be compliant with a new state school safety code, the School Safety Infrastructure Council guidelines.

The redesigned Sandy Hook Elementary School proves that technology can reimagine the possibilities of public safety, if only we allow it to. Examples like this make it really difficult for me to accept that our current state of public safety lags so much. At Avaya, we’re doing all we can to actively bridge this gap. One massive inadequacy we’re especially passionate about improving is the accuracy of E911, or Enhanced 911.

E911 was designed to allow emergency responders to determine the location of a caller based on the caller ID. Today, however, devices have become nomadic and the phone number to location correlation is no longer a valid assumption. Fortunately, there are alternative solutions available that can detect the exact location of a device, an IoT object, or an individual by leveraging smart devices, wearable technologies, and more.

This combination of advanced technology (i.e., Wi-Fi triangulations, GPS, wearables with NFC capabilities) is a key to overcoming 911’s greatest flaw: lack of location data. These advances in technology make it possible, for example, to detect a child that has left a secure area and then immediately send an alert to emergency response teams. These different mechanisms make it possible to save lives. Imagine if someone was suffering a heart attack in an office complex. In this case, standard 911 will enable first responders to locate the building the person is in, but how do they know if the person is on the fifth floor, the 40th floor or in the basement? This same scenario applies to any suspected or proven terrorist.

All of this sounds great, but there’s one problem: for many, deploying these technologies isn’t top of mind. Just consider findings from a 2015 national investigation conducted by USA Today. After sorting through hundreds of pages of local, state and federal documents, it was discovered that:

  • The average chance of 911 getting a quick fix on location ranges from as low as 10% to as high as 95%.
  • In California, 63% of cell phone calls to 911 didn’t share location in 2014.
  • In Texas, two-thirds of cell phone calls reached 911 without an instant fix on location during 2010 to 2013.

No two ways about it: the reason why so many emergency calls today reach 911 without an accurate location is because there’s a severe technology issue at play. Public safety access points (PSAPs) still rely on technology that was designed to locate landlines, despite the fact that the number of 911 calls that come from cell phone networks is 70% to 80% and growing.

Users are evolving from land lines to wireless technologies, but PSAPs continue to remain behind, locked into technology designed in the 1960s. Despite technology being readily available, it isn’t being implemented. Why does this travesty exist? The reason for this is simple: because providers choose not to. Because it’s too costly. Because it’s too much of a hassle or inconvenience. Meanwhile, the reason for implementation is and always will be more important: because lives hang in the balance when archaic infrastructure remains in place.

The bottom line is this: there needs to be a greater movement towards next-generation methodologies of tracking one’s location. PSAPs need to effectively keep up with today’s pace of innovation in order to better serve the general public. It’s great to have a caller’s general location, but responders need richer and more relevant caller information to elevate public safety to where it needs to be today. We need to create proactive urgency around this issue—otherwise, we’re going to keep suffering preventable tragedies until someone finally decides that enough is enough.

Coming up: In Part II of this series, Avaya’s Chief Architect for Worldwide Public Safety Solutions Mark Fletcher will dig into specific technology deficiencies and how to overcome them by easily and cost-effectively upgrading your 911 infrastructure.